Skip to contents

Fetches univariate or bivariate data for a given source, year, NUTS level, and selected filters.

Usage

mi_data(
  x_source,
  y_source = NULL,
  year,
  level,
  x_filters = list(),
  y_filters = NULL,
  limit = 2500
)

Arguments

x_source

A character string specifying the source name for the x variable.

y_source

(Optional) A character string specifying the source name for the y variable.

year

A character or integer specifying the year.

level

A character string specifying the NUTS level ("0", "1", "2", or "3").

x_filters

A named list where the names are the filter fields for the x variable and the values are the selected values for those fields. Default is an empty list. To find out which filters to use, use mi_source_filters with the desired source_name.

y_filters

(Optional) A named list where the names are the filter fields for the y variable and the values are the selected values for those fields. Default is NULL. To find out which filters to use, use mi_source_filters with the desired source_name.

limit

An integer specifying the maximum number of results to return. Default is 2500. This default should be enough for most uses, as it is well above the number of NUTS 3 regions in the EU. The maximum limited by the API is 10000.

Value

A tibble with the following columns:

  • geo: code for the (NUTS) region at the requested level.

  • geo_name: name of the (NUTS) region at the requested level.

  • geo_source: source (type) of the spatial units at the requested level.

  • geo_year: year of the (NUTS) region at the requested level.

  • x_year: The year of the predictor variable (X), included in bivariate requests.

  • y_year (optional): The year of the outcome variable (Y), included in bivariate requests (only included when y_source is provided).

  • x: the value of the univariate variable.

  • y (optional): the value of the y variable (only included when y_source is provided).

Examples

# \donttest{
# Univariate example
mi_data(
  x_source = "TGS00010",
  year = 2020,
  level = "2",
  x_filters = list(isced11 = "TOTAL", sex = "F")
)
#> # A tibble: 334 × 6
#>    geo   geo_name         geo_source geo_year x_year     x
#>    <chr> <chr>            <chr>      <chr>    <chr>  <dbl>
#>  1 AL01  Veri             NUTS       2021     2020    NA  
#>  2 AL02  Qender           NUTS       2021     2020    NA  
#>  3 AL03  Jug              NUTS       2021     2020    NA  
#>  4 AT11  Burgenland       NUTS       2021     2020    NA  
#>  5 AT12  Niederösterreich NUTS       2021     2020     4  
#>  6 AT13  Wien             NUTS       2021     2020    10  
#>  7 AT21  Kärnten          NUTS       2021     2020     5  
#>  8 AT22  Steiermark       NUTS       2021     2020     4.4
#>  9 AT31  Oberösterreich   NUTS       2021     2020     3.7
#> 10 AT32  Salzburg         NUTS       2021     2020     3  
#> # ℹ 324 more rows

# Bivariate example
mi_data(
  x_source = "TGS00010",
  y_source = "DEMO_R_MLIFEXP",
  year = 2020,
  level = "2",
  x_filters = list(isced11 = "TOTAL", sex = "F"),
  y_filters = list(age = "Y2", sex = "F")
)
#> # A tibble: 332 × 8
#>    geo   geo_name         geo_source geo_year x_year y_year     x     y
#>    <chr> <chr>            <chr>      <chr>    <chr>  <chr>  <dbl> <dbl>
#>  1 AL01  Veri             NUTS       2018     2020   2020    NA    78.3
#>  2 AL02  Qender           NUTS       2018     2020   2020    NA    80.4
#>  3 AL03  Jug              NUTS       2018     2020   2020    NA    76.9
#>  4 AT11  Burgenland       NUTS       2018     2020   2020    NA    81.8
#>  5 AT12  Niederösterreich NUTS       2018     2020   2020     4    81.8
#>  6 AT13  Wien             NUTS       2018     2020   2020    10    80.9
#>  7 AT21  Kärnten          NUTS       2018     2020   2020     5    82.2
#>  8 AT22  Steiermark       NUTS       2018     2020   2020     4.4  81.9
#>  9 AT31  Oberösterreich   NUTS       2018     2020   2020     3.7  82.3
#> 10 AT32  Salzburg         NUTS       2018     2020   2020     3    82.7
#> # ℹ 322 more rows
# }