Fetches univariate or bivariate data for a given source, year, NUTS level, and selected filters.
Usage
mi_data(
x_source,
y_source = NULL,
year,
level,
x_filters = list(),
y_filters = NULL,
limit = 2000
)
Arguments
- x_source
A
character
string specifying the source name for the x variable.- y_source
(Optional) A
character
string specifying the source name for the y variable.- year
A
character
orinteger
specifying the year.- level
A
character
string specifying the NUTS level ("0", "1", "2", or "3").- x_filters
A
named list
where the names are the filter fields for the x variable and the values are the selected values for those fields. Default is an empty list. To find out which filters to use, usemi_source_filters
with the desiredsource_name
.- y_filters
(Optional) A
named list
where the names are the filter fields for the y variable and the values are the selected values for those fields. Default isNULL
. To find out which filters to use, usemi_source_filters
with the desiredsource_name
.- limit
An
integer
specifying the maximum number of results to return. Default is 2000.
Value
A tibble
with the following columns:
For univariate data (when y_source
is not provided):
best_year
: the best available year, closest to the requested year.geo
: code for the NUTS region at the requested level.geo_name
: name of the NUTS region at the requested level.x
: the value of the univariate variable.
For bivariate data (when y_source
is provided):
best_year
: the best available year, closest to the requested year (same for both x and y variables).geo
: code for the NUTS region at the requested level.geo_name
: name of the NUTS region at the requested level.x
: the value of the x variable.y
: the value of the y variable.
Examples
# \donttest{
# Univariate example
mi_data(
x_source = "TGS00010",
year = 2020,
level = "2",
x_filters = list(isced11 = "TOTAL", unit = "PC", age = "Y_GE15", freq = "A")
)
#> # A tibble: 910 × 4
#> best_year geo geo_name x
#> <chr> <chr> <chr> <dbl>
#> 1 2021 AL01 Veri NA
#> 2 2021 AL02 Qender NA
#> 3 2021 AL03 Jug NA
#> 4 2021 AT11 Burgenland 4.2
#> 5 2021 AT11 Burgenland NA
#> 6 2021 AT11 Burgenland 4.2
#> 7 2021 AT12 Niederösterreich 4.2
#> 8 2021 AT12 Niederösterreich 4
#> 9 2021 AT12 Niederösterreich 4.3
#> 10 2021 AT13 Wien 10.6
#> # ℹ 900 more rows
# Bivariate example
mi_data(
x_source = "TGS00010",
y_source = "DEMO_R_MLIFEXP",
year = 2020,
level = "2",
x_filters = list(isced11 = "TOTAL", unit = "PC", age = "Y_GE15", freq = "A"),
y_filters = list(unit = "YR", age = "Y_LT1", freq = "A")
)
#> # A tibble: 2,000 × 5
#> best_year geo geo_name x y
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2018 AL01 Veri NA 75.1
#> 2 2018 AL01 Veri NA 77.3
#> 3 2018 AL01 Veri NA 79.5
#> 4 2018 AL02 Qender NA 78.9
#> 5 2018 AL02 Qender NA 81.5
#> 6 2018 AL02 Qender NA 76.5
#> 7 2018 AL03 Jug NA 76.2
#> 8 2018 AL03 Jug NA 78.2
#> 9 2018 AL03 Jug NA 74.3
#> 10 2018 AT11 Burgenland 4.2 79.8
#> # ℹ 1,990 more rows
# }